
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL
Prof. Hiren Patel, Ph.D., P.Eng.
Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.
Some rights reserved.

Swapping between
arrays

2
Swapping between arrays

Outline

• In this lesson, we will:
– Discuss swapping a sequence of entries between two arrays
– Describe the number of assignments
– Determine if we can reduce the number of assignments if the order

of the swaps does not matter

3
Swapping between arrays

Swapping between arrays

• Suppose you want to swap m entries between two arrays,
the first starting at position n1 and
the second starting at position n2

– You may assume both arrays are sufficiently large

• The function declaration would be:
void swap(double array1[], std::size_t n1,

double array2[], std::size_t n2,
std::size_t m);

4
Swapping between arrays

Swapping between arrays

• This should be a simple for loop that has m swaps:
void swap(double array1[], std::size_t n1,

double array2[], std::size_t n2,
std::size_t m) {

for (std::size_t k{ 0 }; k < m; ++k) {
double tmp{ array1[n1 + k] };
array1[n1 + k] = array2[n2 + k];
array2[n2 + k] = tmp;

}
}

5
Swapping between arrays

Number of assignments

• This requires 3m assignments
– One of these, at each step, is the initialization of tmp

• Question: Can we do better if we don’t care about the order?
– For example,

suppose this is just related data that we want to rearrange
– Can we get it down to 2m assignments?
– Pause and think about this

6
Swapping between arrays

Swapping entries

• For example, suppose we have the following:
swap(a1, 1, a2, 3, 4);

3.2 4.5 1.2 8.5 6.2 4.9 7.0 9.3 0.6
a1

a2
1.5 6.5 4.9 6.8 4.2 4.0 8.0 5.0

7
Swapping between arrays

Swapping entries

• All we can do is swap the entries:
swap(a1, 1, a2, 3, 4);

3.2 6.8 4.2 4.0 8.0 4.9 7.0 9.3 0.6
a1

a2
1.5 6.5 4.9 4.5 1.2 8.5 6.2 5.0

8
Swapping between arrays

Swapping without concern for order

• Suppose we don’t care about how they are swapped
unordered_swap(a1, 1, a2, 3, 4);

3.2 4.5 1.2 8.5 6.2 4.9 7.0 9.3 0.6
a1

a2
1.5 6.5 4.9 6.8 4.2 4.0 8.0 5.0

9
Swapping between arrays

Swapping without concern for order

• Assign the first entry in one array to a temporary variable

3.2 4.5 1.2 8.5 6.2 4.9 7.0 9.3 0.6
a1

a2

tmp = 4.5

1.5 6.5 4.9 6.8 4.2 4.0 8.0 5.0

10
Swapping between arrays

Swapping without concern for order

• This creates a hole, so fill it with the first entry of the next array

3.2 6.8 1.2 8.5 6.2 4.9 7.0 9.3 0.6
a1

a2

tmp = 4.5

1.5 6.5 4.9 6.8 4.2 4.0 8.0 5.0

11
Swapping between arrays

Initial approach

• Now fill this hole with the second entry of the first array,
and so on

3.2 6.8 1.2 8.5 6.2 4.9 7.0 9.3 0.6
a1

a2

tmp = 4.5

1.5 6.5 4.9 1.2 4.2 4.0 8.0 5.0

12
Swapping between arrays

Swapping without concern for order

• After 2m assignments, there is a hole at the end of the second array

3.2 6.8 4.2 4.0 8.0 4.9 7.0 9.3 0.6
a1

a2

tmp = 4.5

1.5 6.5 4.9 1.2 8.5 6.2 8.0 5.0

13
Swapping between arrays

Swapping without concern for order

• After 2m assignments, there is a hole at the end of the second array
– Fill this with the temporarily stored value

3.2 6.8 4.2 4.0 8.0 4.9 7.0 9.3 0.6
a1

a2

tmp = 4.5

1.5 6.5 4.9 1.2 8.5 6.2 4.5 5.0

14
Swapping between arrays

Implementation

• The code is slightly more complex, as we must be careful:
void unordered_swap(double array1[], std::size_t n1,

double array2[], std::size_t n2,
std::size_t m) {

if (m == 0) {
return ;

}

double tmp{ array1[n1] };

for (std::size_t k{ 0 }; k < m - 1; ++k) {
array1[n1 + k] = array2[n2 + k];
array2[n2 + k] = array1[n1 + k + 1];

}

array1[n1 + m - 1] = array2[n2 + m - 1];
array2[n2 + m - 1] = tmp;

}

15
Swapping between arrays

Comparison

• We may now observe that:
– The original code required 3m assignments
– If we don’t care about swaps, we can reduce this to 2m + 1

• The entries from the first array are rotated by one in the second

16
Swapping between arrays

Summary

• Following this lesson, you now
– Know that swapping entries between arrays can be optimized
– Understand we can reduce the number of assignments by almost

one third if we don’t care about the order of the copies

17
Swapping between arrays

References

[1] https://en.wikipedia.org/wiki/Array_data_structure

18
Swapping between arrays

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

19
Swapping between arrays

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

	Swapping between arrays
	Outline
	Swapping between arrays
	Swapping between arrays
	Number of assignments
	Swapping entries
	Swapping entries
	Swapping without concern for order
	Swapping without concern for order
	Swapping without concern for order
	Initial approach
	Swapping without concern for order
	Swapping without concern for order
	Implementation
	Comparison
	Summary
	References
	Colophon
	Disclaimer

